Does the colour intensity of a blood spot image obtained by smartphone accurately correlate with canine packed cell volume (PCV)

Craig Breheny, Adam Gow
Royal (Dick) School of Veterinary Studies, Edinburgh, UK

OBJECTIVES
To evaluate the utility of smartphone images in extrapolating a patient’s PCV.

METHODS
Samples were obtained using canine EDTA blood surplus after clinical testing. A single drop was placed on filter paper, using a standard plastic pipette, and left for 30 seconds. The paper was then placed in a box with a standardized light source, and photographed with an I Phone 6S. Four images were taken. Each sample also had concurrent manual PCV measurement performed according to WHO guidelines. Colour intensity was measured using Image J in the largest homogenous area of the drop, the mean value from the four images was recorded. A scatter plot was generated using the obtained data, plotting the actual PCV against the average colour intensity. An additional ten samples were then evaluated with their colour intensity value inserted into the equation of the line generated, using the line of best fit.

RESULTS
Sixty samples were used to generate the plot. This yielded a R² value of 0.9037. For the 10 samples, the mean difference between the predicted and actual PCV was −3.6%. When these 10 samples were added to the data set the R² remained at 0.9037.

STATEMENT
This technique showed an excellent correlation with the patient’s PCV. If this technique can be further automated to be performed all within the smartphone, this would be of great use, particularly in low resource settings.

Whole blood manganese concentrations in anaemic dogs with inflammatory bowel disease or confirmed iron-deficiency anaemia

Marisa Ferreira, Arielle Aylor, Richard Mellanby, Susan Campbell, Adam Gow
Hospital for Small Animals, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, UK

OBJECTIVES
Manganese is an essential trace element, however excess manganese leads to neurotoxicity in many species.

METHODS
Dietary Mn is efficiently adsorbed through the gastrointestinal tract via divalent metal transporter 1(DMT1) which is also responsible for iron transport. DMT1 is upregulated in iron deficiency and iron-deficiency anaemia has been associated with increased manganese concentrations in humans with reports of resultant neurotoxicity. The goal of this study was to evaluate if manganese concentrations in anaemic dogs with inflammatory bowel disease or confirmed iron-deficiency, were elevated compared to non-anaemic ill or healthy controls.

RESULTS
Manganese levels were significantly different between the four groups (P=0.0005) and overall higher in non-anaemic than anaemic dogs (P=0.0078). Manganese concentrations were also higher in healthy compared to